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Background 

To maximize research opportunities for the latest DARPA Robotics Challenge (DRC), 

DARPA selected Boston Engineering to lead a team of independent researchers to 

monitor the DRC events and to identify effective HRI methods that can be applied to 

enhance robotic design guidelines across the public and private sectors. Importantly, the 

2015 DRC Finals provided a forum to conduct the industry’s most extensive study of how 

human-robot team performance is affected by levels of robot autonomy and interaction.  

The HRI evaluation team established a novel methodology that enabled analysis of 

performance based on the task requirements and the complexity of the actions required. 

The evaluation included:  

1. Identifying correlations between interaction methods and team performance (e.g.,

number of task attempts, speed, etc.),

2. Evaluating team communications, data transmit/receive, and the connection to

autonomy, and...

3. Predicting team performance based on their interface designs, strategy and training

aspects, and lessons learned from the DRC Trials in 2013.

Established a correlation between interaction methods and performance for manipulation and mobility.

Successful HRI “level of effort” techniques enable operators to focus on higher-level task strategies instead of lower, more tactical 

levels of robot control and situational awareness. Importantly, “level of effort” is not necessarily an indication of the amount of 

autonomy, as top teams used markedly different levels of autonomy. The major difference between the successful and unsuccessful 

teams was in the subtle connection between interaction methods and performance that enables effort within the task-level context 

vs. robot maneuverability/operation context.  

Key Outcomes and Findings

Developed an algorithm that predicted team scores with 71% accuracy (within 1 point). This is deemed espe-

cially successful as an initial prediction because the teams’ self-predictions (gathered from pre-event inter-

views) were only 45% correct and a randomized prediction would only prove 31% correct. The HRI evaluation 

team generated the predictions to: 
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2. Determine the effectiveness of the prediction algorithm developed by Boston Engineering
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Snapshot:

Led by Boston Engineering, the 

,6-�IZEPYEXMSR�XIEQ�MHIRXMƼIH�

strong connections among 

the human-robot interaction 

Techniques (an HRI evaluation 

team metric that includes low-

bandwidth adaptability, robot 

stability, and task strategy), 

Training (type and amount prior 

to the event), and Performance 

(incidents, successful vs. failed 

subtasks, speed, and more) at the 

DRC events. 



Showed that team success was not dependent on how 

much autonomy they used. Even though the event was 

staged to promote teams with more autonomy, there was 

little to suggest that this was the case. Some successful 

teams were able to modify their operator-in-the-loop 

processes to adjust to the data limits set for the event, 

while others did not base their interactions on those limits 

at all. The analysis of the teams’ data use supported 

this conclusion that there was little correlation between 

autonomy and performance. Restricting data did, however, 

improve the event’s realism, given the expectation of working 

within a degraded and unstructured environment.  

-HIRXMƼIH�TSXIRXMEP�GEYWEPMX]�FIX[IIR�GSQFMRIH�MRXIVJEGI�

techniques and performance. Across all comparisons of 

team performance and interface techniques (e.g., sensor 

fusion, simulation before execution, and the number of 

operators), only the comparison among teams using 

simulation before execution and those that did not were 
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number of operators have a more complicated connection to 

performance. Findings include:

• Teams with high levels of training that used simulation

before execution were more than 2.5X more successful

at completing tasks vs. those without

• Teams with high-level technique that used simulation

before execution had more incidents and were more

successful at completing tasks vs. those without

• All teams with high “Training” also used higher levels of

sensor fusion

• Only one team with high “Technique” did not have

sensor fusion

• Multiply and divide sensor fusion: Provide multiple

perspectives through intuitive sensor fusion to

increase the operator’s situational awareness

• Balance operator and robot responsibility: Use

methods that enabled “shared” mental models

between the operator and robot to streamline

interfacing

• Separate mobility and manipulation tasks, but

use similar control methods: Control complexity

demands a separation of these types of tasks

(at least for the DRC Finals) – tune the interface

XS�STXMQEP�GSRXVSP�ERH�JIIHFEGO�JSV�WTIGMƼG�XEWO�

strategies.

Note: The HRI evaluation team considers this

a short-term guideline and expects near-term

advances to close gaps in this area

• Maintain situational awareness using minimal

bandwidth: Use a variety of techniques to maintain

situational awareness when new data isn’t available

rather than wait for new data

• Decrease the number of operators and/or divide

a large number of operators: Reduce the number

of operators or delegate tasks by function so that

those in control maintain appropriate situational

awareness

• Design holistically: Instead of focusing on single

aspects of an interaction, consider one that

consists of every aspect, including the operator,

robot, and the mission they are performing when

developing the interaction design

,6-�(IWMKR�+YMHIPMRIW
8LI�,6-�IZEPYEXMSR�XIEQ�ETTPMIH�MXW�ƼRHMRKW�JVSQ�

the DRC Finals and DRC Trials to provide guidance 

for robot developers and component developers to 

be used in machines/robotics. 

Observations showed that success was 

dependent on high levels of ‘Technique’ and 

‘Training’ in addition to using simulation 

before execution and implementation of high 

sensor fusion for tasks. 
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Introduction 

The 2015 DARPA Robotics Challenge (DRC) was easily the largest display of semi-autonomous, remote 
humanoid robots performing a set of standard tasks with a human operator in the loop. Some teams used 
DARPA-provided robots (i.e., Boston Dynamics Atlas) while some provided their own systems, but every team 
had to engineer their own control schemes, interfacing techniques, and autonomy, all comprising their system’s 
human-robot interaction (HRI) methods. Our team designed and conducted HRI analyses for both the DRC 
Trials (Yanco et al., 2015) and Finals (Norton et al., 2017), where performing teams were observed on the field 
(with the robot) and in the control room (with the operators; only teams that consented to be part of the study 
were observed in the control room). Our analyses categorized each competition task by the type of manipulation 
and mobility activities needed to complete it.  

We then crossed team performance on each of these subtasks with the interaction methods they used, 
categorizing them by control methods levels of effort, sensor fusion, and operator layout. From our analyses, 
several HRI components, specifically those related to the human operators, contributed to team performance: 
interaction modalities (e.g., sensor fusion, control methods), operator distribution (e.g., active and passive 
operators, fixed or rotating layouts), and interface layout (Norton et al., 2017).  

Based on our studies, it is apparent that HRI had a significant impact on performance, with some teams 
utilizing certain techniques that outperformed others. Our findings on effective HRI techniques used at the DRC 
have implications outside of the competitions in the real world. To that end, this article comprises our 
perspectives on human-robot team performance, based upon our observations of the DRC competitions, 
considering the human operators, the capabilities of the robots, the operational context under which tasks were 
performed, and the relationships between each factor.  

Throughout each section, we discuss these factors of the human-robot team through examples observed at the 
DRC, and their implications on current and future developments in the world of response robots. This article 
does not cover each factor comprehensively (see Yanco et al. [2015] and Norton et al. [2017] for the detailed 
presentation of the results of the Trials and Finals, respectively), but instead focuses on those we found to have 
had the most impact on performance at the DRC.  

Given the time that has passed since the DRC Finals, many of the participating teams have published papers 
discussing their HRI design approaches. Where appropriate, we cite those publications or online media like 
YouTube videos as examples of concepts being discussed. It should be noted that other teams might have also 
used similar methods, but only teams who have publicly disclosed their methods since the DRC Finals in 
publications are identified in this paper, given the Institutional Review Board protocol approved at the 
University of Massachusetts Lowell. 

Background and Definitions 

This article heavily references two existing publications on HRI analyses at the DRC (Yanco et al., 2015; 
Norton et al., 2017); this section provides a brief review of the terminology used in those studies, which are used 
in this article. A range of performance metrics were used in evaluation of the different teams, including success 
of attempts and relative duration to complete tasks or subtasks.  

In the development of our study methodology, we determined that it was inappropriate to focus on only a 
single performance metric (e.g. overall score, the competition’s metric), as this is only one indication of the 
teams’ abilities. Other metrics, such as speed, number of attempts, and number of incidents, were introduced to 
provide a more holistic view of performance. The possible deeper-level meanings of these metrics are discussed 
in the referenced publications. 
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To increase the granularity of our analyses, we divided each task into subtasks, which are actions or 
milestones that needed to be performed in order to complete the task. Each subtask and task was then 
categorized by the type of manipulation and mobility activities required, referred to as “subtask functions.” 

Six subtask functions were defined: 
x Unobstructed Traverse (UT): Mobility over flat, open ground (e.g., walking from the Valve to the 

Wall). 
x Obstructed Traverse - Foot (OTF): Mobility over ground with obstructions that pose challenges to the 

robot's lower extremities (e.g., walking over the blocks in Rubble-Terrain). 
x Obstructed Traverse - Robot (OTR): Mobility over ground with obstructions that pose challenges to the 

robot's entire body (e.g., walking through the Door). 
x First Order Manipulation (FOM): Fine or coarse manipulation and use of the end effector (e.g., rotating 

the Valve wheel). 
x Second Order Manipulation (SOM): Interacting with a non-affixed object, guiding the end effector of 

the object (e.g., moving the drill to cut the Wall). 
x Third Order Manipulator (TOM): Manipulating a system with its own control loop (e.g., driving the 

Vehicle). 

Each team’s interaction method was distilled into levels of effort based on the amount of interaction from the 
operator required coupled with the level of automation needed from the robot and interface. We defined levels 
of effort for manipulation and mobility activities. For manipulation, the levels of effort are defined as: 

x Manipulation Level of Effort 1: Pre-defined action or script based on contextual information, such as 
the use of an object model or template, that generates manipulator trajectories; usually a single click or 
button press per action, sometimes the entire execution of a task is performed with a single action (e.g., 
turning the valve with a single wrist rotation). 

x Manipulation Level of Effort 2: Maneuvering an end effector (or interaction marker) using a keyboard, 
mouse, or game controller (generally visualized through an avatar of the robot using a Cartesian 
transform tool) which uses inverse kinematics and generates manipulator trajectories; if an object 
model or template is used it may provide contextual information (e.g., where to place fingers when 
grasping an object).  

x Manipulation Level of Effort 3: Sending individual joint angles using a keyboard, mouse, or game 
controller (sometimes using a Cartesian transform tool); does not use any contextual information.  

For mobility, the levels of effort are defined as: 
x Mobility Level of Effort 1: Placing a waypoint or “ghost” avatar for the robot to walk to and the 

footsteps are automatically generated.  
x Mobility Level of Effort 2: Pre-defined action or script to step in a specified direction a number of 

steps; two-dimensional directional control for traversing in a direction either continuously or 
incrementally (similar to that of wheeled robot teleoperation).  

x Mobility Level of Effort 3: Manual placement and adjustment of individual footsteps; generally only 
used for tasks that involve changing elevations, such as Rubble-Terrain or Stairs. 

We also defined a common interaction technique for the placement of object models and templates into a 
camera view or point cloud display, used to add context to an autonomous action. For example, the operator 
would guide the robot’s manipulator to the drill by placing a virtual model of the drill into the point cloud. This 
technique is referred to as model/template placement. 
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Interfacing Techniques 

For teleoperated robots, the most ubiquitous display is a video feed streaming from a camera. The placement 
of the camera on the robot dictates what it can see in relation to the robot, such as the environment in front of 
the robot or an exocentric view of the robot’s manipulator. Some systems also include multiple cameras.  

Many systems also feature simulated robot avatars that visualize the robot’s pose in 2D or 3D. This data is 
gathered from encoders on the robots and from lidar sensors that provide point clouds. Both types of data 
displays provide situation awareness (SA) of the environment and the robot to the operator.  

Response robots are most often controlled via a combination of joysticks, directional pads, and buttons. 
Control is also typically only possible if there is sufficient communications bandwidth, due to the operator 
largely relying on a live display of camera data. At the DRC, higher complexity robots (i.e., humanoids) called 
for more complex data displays and control methods, as did the implementation of forced degraded 
communications links between the operator and the robot while performing certain tasks. In this section, we 
discuss some of these techniques and their implications. 

Data Presentation 

It is uncommon to find instances of sensor fusion in today’s commercially-available response robot interfaces 
that combine multiple data displays using a common reference frame. The type of displays typically available 
vary in dimensionality and perspective (i.e., fixed perspective of a 2D camera image with a 3D robot avatar), 
making them difficult to fuse properly. Chen et al. (2007) addresses similar issues that can impact human 
performance for remote operation, which include image bandwidth, time lag, and 2D views. 

In such scenarios, the operator is exposed to potential pitfalls due to poor presentation, which can be 
mitigated with proper design consideration. Stereo cameras, lidar sensors, or 3D structured light sensors can be 
used to provide proximity data about the environment, from varying perspectives that the operator can 
manipulate. While not commonly found on today’s response robot platforms, most all of the teams at the DRC 
had systems equipped with one or more of them. These types of sensors generally provide high fidelity 3D 
spatial awareness in the form of a point cloud. Based upon resolution of the focal area, refresh rate of the sensor, 
and other viewing conditions, this technique can generate realistic 3D data that the operator can use to interpret 
a scene and command the robot within it.  

Multiple versions of point clouds and lidar visualizations were used during the Finals, spanning from very 
“novice friendly” visualizations to “super-user” systems. Of the teams in our study, all 20 used camera views, 
19 used a point cloud display, 18 used a simulated robot avatar display, and 19 used sensor fusion to combine 
multiple data displays to share a common reference frame (Norton et al., 2017). Teams that used Atlas robots all 
had the same Carnegie Robotics MultiSense sensors in the robot’s head with stereo cameras and a rotating lidar, 
typically using similar interface displays of this data (see Figure 1 for an example of MIT’s visualization from 
the Vehicle task). With many data streams fused into a single view, the display may not appear to be “novice 
friendly,” at least compared to present day response robot interfaces.  

However, in the example shown in Figure 1, even a new operator should be able to understand where the 
robot is in relation to the car on the display. Training would be needed to understand the context of the display 
with respect to the relationship between the simulated robot avatar and the actual position of the robot in the 
physical world, though.   

In contrast, a team with a more “super-user” based approach was THOR. The images of the lidar system (see 
Figure 2) included a variety of additional blocks and vertical lines that were intended to indicate points of 
interest and/or extension limitations of the robot. As an outside observer, the relationship between the objects 
and lines within the image were not easy to correlate to the edges or surfaces of objects within the environment. 
However, this method could have been an adaptation to which the operators had become accustomed, or even 
preferred by one of the operators.  
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This interface is one example of many for teams generating highly detailed interface approaches that could be 
very difficult to operate by a novice operator; most interfaces was designed to be used in the context of the 
competition (i.e., made and operated by a developer).  

In a way, THOR’s distance display is similar to more traditional 2D lidar displays that provide a visualization 
of boundaries in the environment around a top-down avatar of the robot, as in Keyes et al. (2010), but viewed 
from a different perspective, drawing the boundaries as bars from the ground up. Any issues stemming from 
presenting distance data in this manner may come from the fact that 2D information is being presented in a 3D 
manner alongside parts of the scene that are displayed truer to their actual shape in the real world (e.g., the robot 
avatar is shown in 3D).  

Sensor fusion displays with variable perspectives are not typically found on present-day response robots, so 
why were they so prevalent at the DRC? One reason may be due to the complexity of controlling a remote 
humanoid robot, with increased degrees of freedom across two legs, two arms, two hands, and the body, and 
issues of balance. A bipedal humanoid robot is inherently unstable, always at risk of falling.  

Today’s wheeled and/or tracked response robots are typically not at risk of falling if they bump into 
something due to being heavy and bulky (or if they are lighter then they may be designed to operate while 
upside down or have the ability to easily flip over). For instance, driving a wheeled ground robot through a 
doorway likely poses very little risk of falling. Doing so with a walking humanoid robot poses many risks of 
bumping into the doorframe, potentially causing it to fall. By using data displays that provide 3D representations 
of the environment, the robot, and the distance between them, the operator is able to better understand the 
position of the robot so as to prevent these types of issues.  

The operator can collect a point cloud, plan the movements of the robot in simulation, and view the planned 
movements from multiple perspectives before they are executed on the physical robot.  

Figure 1. Team MIT’s sensor fusion display showing combined camera images, lidar point cloud, and simulated robot avatar, while 
operating the car. Image from YouTube https://www.youtube.com/watch?v=em69XtIEEAg (accessed August 2017). 

https://www.youtube.com/watch?v=em69XtIEEAg
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Figure 2. Team THOR’s interface display showing a simulated robot avatar in a display with blocks and vertical bars to correspond 
with edges or surfaces in the environment. Image from McGill et al. (2017). 

Many interfaces provided with today’s response robots use 3D robot avatars to provide pose information of 
the robot; point cloud displays could be used in conjunction to provide more information about the robot’s 
relationship to the environment, although not currently done. The 3D robot avatars are also typically able to be 
viewed from multiple perspectives, generally relying on the same gamepad controller that is used to drive the 
robot.  

Changing the perspective of the point cloud displays by the DRC teams was largely performed using a mouse 
and keyboard, input devices not commonly found on response robots. If point clouds with robot avatar displays 
were to be introduced more commonly, consideration would have to be given to how and when the point cloud 
decays (replacing old data with new data) and the robot would have to be able to localize itself, continually, 
while maneuvering within the point cloud.  

This type of data is certainly more complex than traditional 2D camera views, but the operator will no longer 
need to mentally fuse a series of camera images to mentally construct the full scene. Proper implementation can 
increase the fidelity of an operator’s understanding of a scene and potentially increase the operator’s sense of 
spatial presence (Stepanova et al., 2017). This also follows the ecological interface design paradigm as 
described by Nielsen et al. (2007) by fusing data displays along a common reference frame and providing an 
adjustable perspective. 

Input and Output 

When maneuvering a present-day response robot, the operator typically uses a gamepad to give directional 
commands and watches the camera displays on the interface, anticipating changes that correlate to the robot’s 
movements (e.g., when driving the robot forward, it is expected for the video from a forward-facing camera on 
the robot to move “forward” into the video). If there are degraded communications, the operator likely needs to 
wait for updated camera images in order to regain situation awareness.  

The sensor fusion displays discussed in the previous section were simultaneously utilized for robot control by 
DRC teams, manipulating the robot avatar’s limbs into a desired position using a keyboard and mouse to plan a 
movement trajectory before execution. These types of control methods were very beneficial in enabling 
continued robot operation during periods of degraded communications. During these periods, there were less 
frequent updates to the higher bandwidth displays that provided contextual information about the environment 
to the operator and robot (e.g., camera images and point clouds).  
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However, a low bandwidth communication line (9600 baud) was constant regardless of where the robot was 
in the test course, enabling the operator to maintain situation awareness of the robot so long as the simulated 
robot avatar updated properly within the virtual representation of the environment around the robot (i.e., using 
the latest point cloud retrieved and joint encoder values from the robot).  

Some teams implemented techniques that enabled them to continue to perform during periods of degraded 
communications. One common approach was to record the joint angles and velocities of the robot’s pose, which 
could be sent on the low bandwidth communication line, then present them as a "ghost" within the virtual space 
created by the old camera images, point cloud, and/or robot avatar (essentially displaying two robot avatars; one 
of the robot’s current state and the other of the robot’s state when the last camera image or point cloud was 
retrieved; see Figure 3 for an example).  

By doing so, teams could take individual camera images or point clouds and continue to estimate robot 
position and distance from the objects in the environment as they continued to operate the robot, even when few 
updates were present. As suggested by Jameson (2001), this approach addressed the challenge of 
communications issues, which is a critical design factor for the support of situation awareness.   

This technique was improved when teams assigned virtual models/templates within the virtual space. One 
example of a team that took advantage of this was IHMC on the Valve task (see Figure 4). Once the operator 
identified the valve with a virtual model/template in the interface, the manipulator movements would be mapped 
within that virtual scene, independent of the stale visual feedback. 

With this design, IHMC was able to perform the Valve task successfully with only minimal updates to the 
visual presentation data. This method is useful only if the robot can have accurate localization using only joint 
angles. Such a design is an advanced method of enhancing robot proprioception, which alleviates information 
analysis duties from the operator and allocates them to a system better suited given the scenario (Chen et al., 
2007; Parasuraman et al., 2000).  

Some teams relied heavily on scripting and autonomous processes to perform the DRC tasks, requiring less 
contextual information about the robot’s positioning relative to other objects in the environment. For example, at 
least one team did not use a simulated robot avatar within their point cloud display – or at all on their interface. 
These teams could theoretically simplify the display; however, such features could be helpful during oversight 
or error handling. Teams using sensor fusion displays with variable perspectives performed better than those 
that did not (Norton et al., 2017), so it follows that including more contextual information for both the robot and 
operator is beneficial for effective operation. 

Figure 3. Team KAIST’s “ghost” robot avatar within a point cloud display (right) alongside a camera image (left) of one of the 
prospective Surprise tasks. Image from Lim et al. (2017). 
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Figure 4. Team IHMC’s user interface while performing the Valve task, with a model/template of the valve wheel placed into their 
sensor fusion display. Image from YouTube https://www.youtube.com/watch?v=TstdKAvPfEs (accessed August 2017). 

However, providing contextual information for the robot and operator did not always function properly. We 
observed a few poor examples in different areas, one being when the accuracy of point clouds and the placement 
of models/templates was not updated automatically by the system. These errors occurred mostly when 
communications were degraded, with some teams incorrectly executing manipulation due to incorrect or 
insufficient movement (e.g., the robot performs the actions necessary to reach and grasp the valve, but the valve 
is actually beside the robot’s hand rather than within it). This type of error can be caused by poor localization of 
the robot while maneuvering within a stale point cloud.  

While old camera images and point clouds would typically decay once new ones were received, the addition 
and removal of virtual objects was largely the responsibility of the operator. We observed several instances of 
inappropriate timing for simulated objects to exit the sensor fusion display. Most notably, this was seen during a 
run where the "ghost" image of the valve wheel appeared in the interface while the team was performing other 
tasks. This was a frustrating, but minor, distraction given the competitors’ exhaustive knowledge of the test 
course, but in a real-world scenario with limited prior knowledge about the environment, this could be a 
significant issue with which the operator would need to contend.  

Teams implemented many different mitigation approaches to assist with robot stability, especially for the 
robots that were not statically stable (e.g., Atlas). One approach was placing cameras at the robot’s knees to 
provide the operator with significantly more situation awareness regarding the robot’s position in relation to the 
environment and the quality of foot placement (see Figure 5). In providing this additional modality in the 
interface, the operator was able to verify a potential mismatch between the footstep plan the robot was supposed 
to take compared to what it actually performed. This technique proved effective; the team that implemented it 
was the only team using an Atlas robot which did not fall during the Finals (Atkeson et al., 2015).  

If the operator trusted the robot’s capability to remain localized while operating within stale point clouds 
during periods of degraded communications, then he/she essentially did not need to be concerned with the state 
of communications. However, complete blackout periods in a real-world deployment would call for much more 
autonomy from the robot.  

While the ability for the operator to observe the robot moving in a simulated display via a “ghost” robot 
avatar and point cloud display would assist with keeping the operator in the loop with respect to the robot’s 
status, during a communications blackout the robot avatar would only be updating according to the commands 
that were sent, not necessarily the result of those commands on the physical robot, which is even more reason to 
present both the last robot state and the “ghost” of the command state. It should be noted that this technique will 
have less success in a highly dynamic environment where both the world and the robot’s position within the 
world is changing.  

https://www.youtube.com/watch?v=TstdKAvPfEs


12 

Figure 5. Team WPI on the Terrain task. From top left, clockwise: the robot on the test course, camera image from the robot’s knee, 
and two point cloud with robot avatar displays showing a mismatch between the robot’s plan and the actual step that was taken. 
Image from Atkeson et al. (2015). 

Based on our observations at the DRC, no robots operated without some input from the operator. Most 
automated manipulation performance (i.e., control method level of effort 1) was used in conjunction with 
models/templates placed by the operator. Prior to the competition, teams were able to program and train their 
systems to perform using these virtual objects, enabling them to act autonomously during the competition. This 
speaks to the relationship between the robot and operator.  

Robots are good at performing known tasks (or known parts of tasks) and the operator is good at specifying 
the variable aspects of those known tasks. The robot/interface can present data to the operator in a fused manner, 
and the operator can interpret it in a meaningful way. Robots are also good at sensing/detecting things more 
precisely and more quickly than humans, and while they are slow with interpretation, low-level autonomy such 
as reacting to obstructions to perform obstacle avoidance is plausible.  

Team MIT implemented a dynamic stabilization technique that enabled the robot to autonomously deploy a 
rapid foot placement in an attempt to maintain its stability when it perceived that a fall was imminent (Atkeson 
et al., 2015). This approach is much more advanced as it does not require operator input to be used. Further 
developments in these kinds of reactive behaviors for robots could significantly aid operators in terms of 
managing workload, in addition to preventing failures.  

Robot Morphologies 

Seventeen teams were responsible for building or procuring their own robots for the Finals, while six teams 
were granted the use of a Boston Dynamics Atlas robot by DARPA (one other team also used an Atlas, but 
procured it privately). Of the non-Atlas robots, eleven different robot makes/models were used. The 
characteristics of each team’s robot varied across many characteristics, such as their overall size, degrees of 
freedom, and mobility methods (e.g., biped, quadruped, wheeled, tracked).  

The characteristic that appeared to have the most significant impact on performance was balance: robots that 
had a statically stable configuration filled four of the top five finisher slots at the DRC Finals. See Figure 6 for 
some examples of statically stable (SS) and statically unstable (SU) platforms, including examples of 
reconfigurable robots that morphed between statically stable and unstable configurations. 



13 

Mobility and Stability 

A statically stable (SS) configuration was very useful for maintaining balance and moving quickly during the 
execution of both mobility and manipulation tasks at the Finals. Seven teams used robots that were either SS by 
default or had the ability to change to a SS pose, and the remaining sixteen always operated in statically unstable 
(SU) positions.  

Based on the metrics and comparison methods used in our previously published analyses of robot 
performance at the Finals (Norton et al., 2017), on average, teams with SS robots generally performed better 
than the SU robots, and, in many cases, these differences in performance were statistically significant (see Table 
1). Due to the disparity of scores between robots of each type, only the most relevant tasks (Door, Valve) or 
subtask functions (UT, FOM, all mobility subtask functions, or all manipulation subtask functions) for each 
metric are presented.  

Statically Unstable (SU) Statically Stable (SS) 

KAIST (SU configuration) KAIST (SS configuration) 

Tartan Rescue (SU configuration) Tartan Rescue (SS configuration) 

IHMC Nimbro 

SNU RoboSimian 

Figure 6. Some of the robots used in the DRC Finals, showing varying morphologies. Photos from 
http://archive.darpa.mil/roboticschallenge/ (accessed August 2017) 

http://archive.darpa.mil/roboticschallenge/


14 

Metric 
Task or 
Subtask 
Function 

Statically Stable (SS) 
Robots 

Statically Unstable (SU) 
Robots Comparison 

avg stdev n avg stdev n SS vs. SU 

Percentage of 
Failed Attempts 

UT 0.0% 0.0% 61 7.1% 25.9% 84 SS* 
Door 2.1% 7.7% 28 20.3% 33.9% 74 SS** 

Percentage of 
Successful 

Tasks/Subtasks 

UT 100.0% 0.0% 61 92.9% 25.9% 84 SS* 

Door 100.0% 0.0% 28 80.2% 38.9% 74 SS** 

Relative 
Duration to 
Complete 

Tasks/Subtasks 

UT 77.4% 49.6% 60 114.5% 101.6% 79 SS* 
FOM 79.5% 58.2% 44 109.0% 67.9% 70 SS* 

Valve 49.8% 32.2% 20 121.5% 86.6% 39 SS** 

Falls Per 
Attempt 

All Mobility 2.4% 14.5% 105 10.3% 29.7% 149 SS* 
All 

Manipulation 0.0% 0.0% 63 6.7% 25.2% 119 SS* 

Table 1. Comparison of performance between teams that used SS robot configurations and those that used SU robot configurations. 
For the percentage of failed attempts, each team’s attempt at a task or subtask was recorded as successful or failed and expressed as 
a percentage of the total attempts made. The same goes for falls per attempt (i.e., each attempt presents an opportunity for the robot 
to fall). The percentage of successful tasks/subtasks does not consider failed attempts, only ultimately successful performance (e.g., 
the robot can fail multiple attempts to grasp the door handle to generate a percentage of failed attempts metric on that subtask, but 
ultimately still end up successfully completing the Door task).   

Relative duration is calculated by dividing a team’s duration on a task or subtask by the average of all the 
teams that completed that task or subtask (i.e., <100% is below average, >100% is above average). Each 
grouping of team performance data points (i.e., performance of SS or SU robots) was then averaged together 
and compared. The category of robot with better performance is noted in the “Comparisons” column; if the 
difference in performance is statistically significant from performing unpaired t-tests, they are indicated by * (p < 
0.05) or ** (p < 0.01). 

Overall, the SS robots had fewer failed attempts, more successful tasks/subtasks, faster relative times to 
complete tasks/subtasks, and fewer falls per attempt.  As highlighted in Table 1, the SS robots made 
significantly fewer unobstructed terrain (UT) errors and completed significantly more UT subtasks than the SU 
robots; this was due to the primarily flat nature of the ground and non-confined spaces in which many of the UT 
subtasks took place in the competition. The teams with SS robots had the ability to complete all mobility tasks 
in a wheeled or tracked mode, enabling them to control their humanoid robots in a manner similar to a 
traditional ground robot, involving inputting simple directional commands (mobility level of effort 2).  

In some cases, these teams also employed waypoint navigation, requiring even lower levels of interaction and 
effort on the part of the operators (mobility level of effort 1). These lower level-of-effort control methods 
combined with the stable base provided a distinct advantage over the bipedal SU robots, as evidenced by 
significantly faster times on all UT subtasks and for all manipulation subtasks, particularly first order movement 
(FOM). Stable robots also performed the Door task with significantly fewer errors and more completed 
subtasks, and performed the Valve task significantly faster than their SU counterparts. Finally, the general lack 
of falls for SS robots was notable, including significantly fewer falls across all mobility tasks/subtasks and all 
manipulation tasks/subtasks.  

These results imply that the use of a statically stable base was extremely beneficial in the competition, and 
resulted in better performance on the majority of tasks spanning various subtasks and metrics. While this 
generally proved to be the case, two of the SS robots scored 0 points, and there were multiple SU robots that 
performed exceptionally well, including two teams that achieved 7 points and one that achieved all 8 points, as 
shown in Figure 7.   

Also, highlighted in Figure 7 is the stark contrast in distribution between SS and SU robots.  The SS robots 
only came in at the extreme ends of the scoring spectrum, with five high-scoring teams and two extremely low-



15 

scoring teams. On the other hand, the SU robots’ scores are more normally distributed. It is worth noting that 
there were twice as many teams with SU robots, which likely influences the distributions. 

In order to further explore potential contributing factors to the overall success or failure of teams with both 
SS and SU robots, we can discuss a few select teams performing two of the tasks that required considerable 
amounts of both mobility and manipulation: Door and Wall.  

We specifically selected these two tasks because they represented a task that was performed by most teams 
(Door) and a task that was only performed by the higher scoring teams (Wall). As the Door task was one of the 
first tasks, and required completion to progress to the remaining tasks (i.e., it couldn’t be skipped), we were able 
to compare data for both high-scoring (HS) and low-scoring (LS) teams using SU and SS robot configurations 
(i.e., HS-SU: IHMC, HS-SS: KAIST, LS-SU: VALOR, LS-SS: AERO). As the LS teams didn’t even attempt 
the Wall task, our analyses for this task focus only on HS teams with both SU and SS robots. 

These more in-depth analyses focused on the relative duration metric for the selected tasks in an effort to 
better understand the time teams spent completing a certain task relative to the average time of completion 
across all teams. Relative duration is calculated by dividing a team’s duration on a task or subtask by the 
average of all the teams that completed that task or subtask.  

Since relative durations are based on all the teams that completed the task, the relative duration metrics for 
the later tasks such as Wall only take into account the HS teams, whereas the relative durations for the Door task 
are relative to average durations that include both HS and LS teams.  

Figure 7. Scores distribution of teams with SU robot configurations (top) and teams with SS robot configurations (bottom). If a team 
used their robot in both a SS and SU configuration, they are only included in the SS graph 
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See Table 2 for a side by side comparison of relative durations for the Door task for AERO, VALOR, 
KAIST, and IHMC on Day 2 of the competition. The subtask functions of the Door consisted of first-order 
manipulation (FOM) to manipulate the handle and open the door (“Open door” subtask), and obstructed traverse 
– foot (OTF) and obstructed traverse – robot (OTR) to traverse through the doorway (“Traverse through door”
subtask).

In general, both HS robots performed faster than the LS robots, although AERO traversed through the 
doorway in the same amount of time as IHMC. Comparing the two HS teams, KAIST was faster than IHMC, 
except when it came to traversing to the door, which was done after performing the Egress task. During this 
time, KAIST had to transition from their SU configuration to their SS configuration. While both LS teams had 
some difficulty with opening the door, both subtasks involving traversal were much quicker for AERO than 
VALOR, who didn’t even get to traverse through the doorway due to time expiration.  

Relative Duration of Door Task (Day 2) for Select Teams 

Task/Subtask Breakdown 
LS-SS: 
AERO 

LS-SU: 
VALOR 

HS-SS: 
KAIST 

HS-SU: 
IHMC 

Door 127.6% 472.0% 31.9% 51.0% 

Traverse to door (UT) 57.5% 172.6% 57.5% 28.8% 

Open door (FOM) 184.6% 784.6% 23.1% 46.2% 

Traverse through doorway (OTF, OTR) 33.3% n/a 16.7% 33.3% 

Table 2. Relative duration for low-scoring (LS) and high-scoring (HS) teams with statically stable (SS) or statically unstable (SU) 
robots performing the Door task and its subtasks on Day 2 of the competition. Relative duration is calculated by dividing a team’s 
duration on a task or subtask by the average of all the teams that completed that task or subtask. A relative duration under 100% 
means the team was faster than average, while a relative duration over 100% indicates that the team was slower than the average 
performance on that task or subtask across all teams completing it.  

The robot used by KAIST (who took first place in the competition and was able to perform tasks in both SS 
and SU configurations) performed the opening of the door and traversing through the doorway while in an SS 
configuration, doing so faster than the highest scoring SU team (IHMC). This is likely due to the stable nature of 
their base, allowing them to be less concerned about balance or whole body control while manipulating the door 
handle. Also, when moving through the doorway, there was a lower chance of KAIST’s robot colliding with the 
doorframe due to a shortened height (by getting “on its knees” for the SS configuration) and lack of side-to-side 
movement while traversing (many humanoid robots swing their hips while walking, as IHMC, the highest 
scoring SU team, did with the Atlas robot).  

However, it should be noted that IHMC did not fail any attempts at the Door task, nor were there any critical 
incidents. Also of note on the Door task, the second-highest scoring SS robot from team Tartan Rescue 
demonstrated the exceptional value of having a reconfigurable design in some cases for error recovery. Tartan 
Rescue’s robot fell while performing the Door task, but managed to complete the task without a reset by 
reconfiguring itself from a bipedal to a quadruped stance and righting itself, as shown in Figure 8. 

See Table 3 for a side by side comparison of relative durations for the Wall task for KAIST and IHMC on 
Day 2 of the competition. The Wall task was comprised of subtask functions FOM for grasping the drill, UT for 
traversing to the wall while carrying the drill, and second-order manipulation (SOM) to operate the drill to cut 
into the wall.  

IHMC performed this task slightly faster than KAIST, with the inverse only being true when it came to the 
subtask of actually cutting the hole in the wall. IHMC was faster to traverse to the shelf, to grasp and activate 
the drill, and to traverse to the wall with the drill in hand. In fact, they had positioned themselves while grasping 
the drill such that minimal locomotion was needed to align with the wall and begin cutting the wall. The 
difference in performance time may be indicative of the options available for each robot type: SU robots had a 
higher risk of falling when the robot traversed than SS robots, allowing the SS robots to move more freely.  

Overall, we found that a large impact on performance was made from robots falling down. There were 
considerable time consequences for falling down in the DRC; robots were penalized with a 10-minute delay 
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before they could continue their task. A particularly rough fall could damage the robot preventing them from 
getting up at all. In the real world, critical errors may cause extreme loss of situation awareness and may not be 
recoverable. Tartan Rescue’s self-recovery after a fall is a good example of resilience. In general, robots that 
utilized SS platforms were very resistant to falling down. 

Relative Duration of Wall Task (Day 2) for Select Teams 

Task/Subtask Breakdown 
HS-SS: 
KAIST 

HS-SU: 
IHMC 

Wall 88.8% 68.3% 

Traverse to shelf (UT) 55.2% 27.6% 

Grasp and activate drill (FOM) 113.9% 81.3% 

Traverse to wall with drill in hand (UT) 54.9% 27.5% 

Cut opening in wall (SOM) 58.7% 78.3% 

Table 3. Relative duration for two high-scoring (HS) teams with statically stable (SS) or statically unstable (SU) robots performing 
the Wall task and its subtasks on Day 2 of the competition. 

Figure 8. Team Tartan Rescue taking advantage of their unique robot morphology to recover after falling through the doorway (top) 
and to climb the stairs moveable limbs with embedded wheels and tracks (bottom). Photos from 
https://www.youtube.com/watch?v=FRkYOFR7yPA (accessed August 2017). 

Versatility (multiple options/configurations) appeared to be beneficial for optimal performance on the DRC 
tasks. Different means of mobility were superior across many tasks. Most teams employed robots with biped 

https://www.youtube.com/watch?v=FRkYOFR7yPA
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configurations for the Stairs task, although Tartan Rescue displayed that this is not the sole 
method/configuration for performing stair-climbing (see Figure 8).  

Legs or heavy-duty tracks are useful for uneven terrain. Tracks are also suitable for rubble as these teams 
could force their way through debris, and work well for UT, but they have the limitation of a single DOF. Omni-
directional mobility is more efficient and could be beneficial in small spaces. KAIST demonstrated this 
limitation, by having to perform a multi-point turn in order to align with the Wall. While wheels are great for 
UT, omni-wheels could be even better. Overall, KAIST used versatility very effectively, using tracks when 
appropriate and legs when it was more suitable.  

These two aspects, resistance to critical errors and versatility, appeared to greatly affect performance with 
respect to scoring at the DRC. They also impacted other factors that are relevant to human-robot teaming in 
teleoperation scenarios. Having a robot that has fewer risks posed against it and/or is resilient in the face of 
engaged risks eases the burden on the operator allowing them to focus on other tasks.  

A versatile robot gives the operator additional options to choose from; this is beneficial when a situation calls 
for a specific tool-set. It is further advisable to have easy control methods for switching between configurations 
as it eases the load on the operator. These recommendations are in line with the adaptive mobility requirements 
put forth by Blitch (2003), specifically that for recovery from tumbles. One apparent drawback of having these 
multiple configurations is that the operator has to be good at each configuration (i.e., a “super-user”). If a 
“super-user” is absent, multiple operators might be required to control each configuration. 

Obstructed Traversal 

During the Finals, teams could choose to perform either of the Rubble tasks: Terrain or Debris. Both tasks 
were aimed at exercising robot mobility over or through obstructions.  

The Terrain task consisted of four rows of pitched cinder block steps with a flat step in the middle. The 
humanoid robot capabilities needed to perform this task included planning footfalls over surfaces of varying 
elevation and pitch, as well as balancing while ascending and descending. The robots that performed this task 
only did so in statically unstable (SU) configurations. As such, we classified the Terrain tasks as subtask 
function OTF. From our analyses, all teams performing the Terrain task placed individual footsteps for the 
robot, adjusting the placement and pitch of each step (mobility level of effort 3).  

See Figure 9 for an example of IHMC, a SU robot, on the Terrain. In some teams, this footstep planning was 
sometimes preceded by placing a model/template of the Terrain into a point cloud view, then placing a waypoint 
either on the flat blocks in the middle or on the flat ground at the other end (mobility level of effort 1), with the 
robot generating a footstep plan based on the model/template and/or the point cloud data. The operators then 
adjusted the model/template of the Terrain and the planned footsteps based on their interpretations of the 
environment, using a combination of the available interface data displays (e.g., camera views, lidar, point 
clouds, and/or sensor fusion displays of both).  

Using this method, a balance was struck between the robot and the operator: the operator interprets the 
environment to place and adjust a model/template that matches, the robot plans footsteps in the environment, the 
operator adjusts those footsteps to match their interpretation, and the robot executes the footsteps while 
maintaining balance. Extra care was also likely taken to perform this task due to the potential severity of failure 
for this particular task (i.e., falling from an elevation). 

The Debris task used a series of objects (2x4s, 4x4s, metal truss, etc.) to obstruct a path. For the Finals, the 
robot could either traverse through the pile or move the objects out of the way to reach the other side. The only 
criteria for scoring a point was that the entire body of the robot be over a line on the other side of the task, so the 
robot could traverse through the pile by either stepping over the objects, push the objects out of their way using 
their legs/mobility base, and/or manipulate the objects out of the way. All of the robots that performed the 
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Debris task did so using a statically stable (SS) mode, driving through the pile to push the objects out of the 
way, and no manipulation of the obstructions was observed.  

We classified its subtask function as OTF. Placing waypoints and 2D directional control (mobility levels of 
effort 1 and 2, respectively) were used by all teams when performing Debris, as no individual footsteps needed 
to be planned. See Figure 9 for an example of KAIST, a SS robot, in the Debris. No walking/footsteps were 
used at all, due to the change in robot locomotion method. The balance between the operator and robot in this 
case much more relied on the operator trusting that the robot, in its SS configuration, would be able to withstand 
colliding with the obstructions.  

No teams in our study were observed using models/templates to perform the Debris task (it should be noted 
that at least one team that performed the Debris task did not consent to be in our study). They would likely only 
be used if the robot had to place footsteps through the pile, which might require a model/template of each 
individual obstruction to be placed.   

During the Finals, on average, the Terrain task was completed in 7:40 and the Debris task was completed in 
4:47 (Norton et al., 2017). This difference in time is due to the design of the tasks, each requiring the HRI 
methods previously described. It also correlates to the control methods levels of effort exhibited by teams on 
each task: placing footsteps (level 3) takes many more actions, and introduces more opportunities for error, and 
adjustment than placing waypoints and 2D directional control (levels 1 and 2, respectively). Also, no robots 
performing the Debris task appeared to be autonomously assisting the operator with the decision of which 
obstructions would be easier or more optimal to push out of the way, unlike the robot planning initial footstep 
plans on the Terrain task. 
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Figure 9. IHMC on Terrain task, descending the pitched cinder blocks. Top: Robot on the test course. Photo from 
http://darparoboticschallenge.com/ (accessed December 2015). Bottom: Interface with planned footfalls to descend in fused point 
cloud, camera data, and robot avatar display. Image from YouTube https://www.youtube.com/watch?v=TstdKAvPfEs (accessed 
August 2017). 

Figure 10. KAIST on Debris, in a wheeled, statically stable mode pushing the objects out of the way.  Photo from 
http://darparoboticschallenge.com/ (accessed December 2015). 

Why didn't any robots attempt to perform the Debris by walking through it? Both the Terrain and Debris 
tasks spanned the same ground path length, and could theoretically be achieved using the same number of 
footsteps. From our observations, the Debris pile appeared to be traversable by a human stepping throughout, 
with no manipulation of the objects necessary.  

Most robot footsteps taken were short strides; for the Terrain, only strides of the length of the two cinder 
blocks (~40 cm) were required, but also involved ascending or descending a surface. The widest item that a 
robot would have had to step over in the Debris pile was the truss (~25 cm), which would involve the robot's 
foot and all parts of its leg fully clearing the volume of it to step over, requiring a much higher lifting of the foot 
than was observed during the competition.  

Ultimately, if the team dedicated their robot development to include a SS configuration (implementing both 
the physical components and the automation to change between SS and SU configurations), they would likely 
choose to perform the Debris task due to its design. A real-world deployment of a remote humanoid robot, 
though, could benefit from both types of capabilities.  

http://darparoboticschallenge.com/
http://darparoboticschallenge.com/
http://darparoboticschallenge.com/
https://www.youtube.com/watch?v=TstdKAvPfEs
http://darparoboticschallenge.com/
http://darparoboticschallenge.com/
http://darparoboticschallenge.com/
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The inspiration for the Terrain and Debris tasks come from experiences with tracked ground robots 
responding to the Fukushima Daiichi disaster (Nagatani et al., 2013). In the field, the operator may encounter an 
obstructed path and have an understanding of the weight and dimensions of the obstructions such that they could 
use a robot to push them out of the way (e.g., pushing 2x4s using a SS configuration, like in the Debris task). 
However, debris piles can contain twisted and destroyed objects, some of which may not be movable. As such, 
the ability for a robot to step through and over debris and non-flat terrain is desirable.  

While the operators at the DRC could apply models/templates to aid their robot in task performance, the 
variability of the real world calls for more robust methods. This further justifies the need for the operator to 
remain in the loop and provide their interpretation of the environment through the interface, even more so in 
unknown environments. For capabilities like walking through debris, the operator will likely need more 
situation awareness of the actual configuration of the layout.  

Camera images and point clouds may be limited in the data they provide due to the viewing angle from 
where the sensors are situated on the robot. Additional time may need to be spent scanning the environment to 
build a better representation of the world such that the robot can effectively act within it. Much of this 
knowledge is not needed when using a wheeled/tracked platform, as development focus for those systems has 
largely relied on building hardened and durable mobility methods, rather than those that need to be concerned 
with balance and purchase (i.e., walking with legs). A combination solution, like that used by team Tartan 
Rescue, may prove the most fruitful, wherein wheels/tracks are embedded within the feet so both locomotion 
methods can be utilized (see Figure 8). 

Operational Context 

The goal of the DRC was to bring the challenges of operating a robot in a disaster scenario to light. The 
competition was structured to focus on several challenges in this context that were most critical to performance. 
For example, maintaining a data connection to a robotic system is very challenging in scenarios, like those 
presented during the Fukushima Daiichi reactor disaster (Nagatani et al., 2013), driving the need for greater 
levels of autonomy in the absence of constant operator control.  

During the competition, the teams were forced to find a solution as the data connection was purposely limited 
to reflect this challenge. Working in an unknown, unstructured, and variable environment also presents 
significant challenges especially when combined with communication issues – the operators cannot rely on any 
significant amount of a priori knowledge to help them achieve their goals. Finally, environments like nuclear 
power plants are built specifically for human operation – tools, controls, gauges for reactor status, etc. all take 
forms that are intended for human interaction and interpretation. These characteristics are not necessarily ideal 
for robotic systems to work with. In this section, we discuss why these factors make operation in a disaster 
scenario so challenging, as demonstrated during the DRC. 

Manipulation in Human-Centric Environments 

Why does operating in a human-centric environment present challenges? We believe that this is due in large 
part to the manipulation aspect of the task performance. The requirements for effective mobility seem to be 
fairly well understood (if not addressed all that effectively), and while balancing is a challenging problem (as 
exemplified by the number of falls at the DRC), we believe this is due to insufficient control, balancing, and 
mobility algorithms. Even the Debris task, originally meant to illustrate the challenge of mobility in a damaged 
environment, was addressed primarily via maneuvering of the debris pile.  

To characterize manipulation in an environment made for humans, we define the task in terms of the systems 
involved from the perspective of the operator. Our breakdown of subtask functions from both of our studies 
broke down manipulation tasks into “orders of manipulation” (first, second, and third; FOM, SOM, and TOM, 
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respectively). This method of characterization was used because it effectively captures the required feedback 
loop to the operator based upon what is normally a simple hand-eye coordination task for a human.  

For example, grasping and rotating the valve at the DRC was categorized as an FOM subtask because most 
teams had already programmed in the expected rotary motion of the valve. Once grasped, a simple script to 
drive the manipulator through a known trajectory was sufficient. The valve to which the wheel is attached 
constitutes another system in this example, but that system did not impact the control of the robot. In systems 
terms, the control loop was closed around the robot’s proprioceptor sensors. 

SOM can be broadly defined as “indirect manipulation,” meaning the requirements of the task demand that 
the robot not only directly interact with something, but indirectly act through something. The best example of 
SOM at the Finals is the Wall task. In this task, the operator had to command the robot to grasp the drill and 
then use the drill to cut a pattern out of the wall. The drill introduces a gap between the robot’s system and the 
output of task performance (i.e., the drill bit must call the wall, as controlled by the robot), and is considered a 
second order action for that reason.  

To effectively cut the pattern on the wall, the operator had to close the control loop not around the robot’s 
proprioceptors, but on the path of the drill bit, which is a step apart from the proprioceptors. In reality, most of 
the teams were able to turn this into a FOM subtask by using a preprogrammed trajectory that they refined 
trough empirical testing. In this case, the only real SOM aspect came into play when validating whether the path 
was correct or not. The drill is not considered a “system” per se because it has a known output given a known 
input (hence how people were able to treat it as FOM). However, it is still a gap between input and output that 
requires some understanding of the effect on the environment, constituting it as SOM.  

TOM, on the other hand, introduces an entire system between the robot’s system and the output. The output 
of this additional system is unknown given a known input, requiring the operator to close the control loop 
around the final output instead of internal proprioception. In other words, TOM requires the operator to predict 
or anticipate the effect of the robot system’s actions on the other system, which is considered level 3 situation 
awareness (Endsley, 1995).  

This understanding and projection into the future is gradually built while the task is being accomplished and 
awareness is gained. The Vehicle task is a great example of TOM (see Figure 11). The operator commanded the 
robot to turn the steering wheel and press on the gas (first system) to get a response of the vehicle (second 
system). The link between the gas pedal and steering wheel to the vehicle output constitutes a second system 
that is unknown to the operator. To effectively control the vehicle, the operator had to take his/her feedback 
from the output of the combination of these two systems: the vehicle motion. In systems terms, the control loop 
was closed around the output of the secondary system.  

Some teams even used a steering wheel with foot pedals as input devices to control the robot while operating 
the car, like team DRC-HUBO at UNLV (Oh et al., 2017). Another relevant example for operation in a nuclear 
reactor scenario would be the control of a crane (i.e., the robot is used to operate the crane controls and visual 
feedback is provided to the operator) or, more simply, rotation of a valve to achieve a value that registers on a 
nearby gauge (as opposed to rotating a predetermined amount, like what was seen in the DRC). 

If we look at these concepts in the context of a human environment, we see that people use TOM in this sense 
all the time. People are very good at hand-eye coordination and also at quickly understanding the link between 
inputs to an unknown system and the output (e.g., driving a car or operating a crane). Our environment has been 
built around this skill that comes very easily for us, but is very difficult for a human controlling a robot to attain 
through an interface. The bottom line here is that for a human-robot team to be effective in a human 
environment, they need to be effective at TOM. 
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Figure 11. Team DRC-HUBO at UNLV performing the Vehicle task. Top: The robot operating the car. Photo from http://www.drc-
hubo.com/ (accessed August 2017). Bottom: The operator’s interaction method for driving the car, showing the car trajectory on the 
left and the steering wheel and foot pedal input devices on the right. Image from Oh et al. (2017). 

Environmental Characteristics 

Given the complexity of unknown environmental characteristics for a human-robot team, the DRC Trial tasks 
had well specified, known characteristics. Teams knew everything about each task before attempting to 
complete them, including dimensions and locations of the valves, size and shape of the debris objects, and exact 
terrain conditions. This information was necessary to ensure the tasks were actually achievable by the teams. 
However, this availability of information is clearly not realistic for an actual scenario.  

Variation of the environment is a core component of achieving a realistic scenario. We defined three 
categories of effort discussed throughout our evaluations, first presented in Yanco et al. (2015) based on 
observations at the Trials, then refined in Norton et al. (2017) to evaluate the Finals. These categories help us to 
understand the impacts of changing characteristics for the tasks. Based on our findings, teams that were able to 
streamline robot control (level of effort 3) and situational assessment (level of effort 2) performed better because 
they didn’t have to put effort into anything but accomplishing the task at hand (level of effort 1). If we look at 
the techniques used by the teams to increase the effectiveness of situational assessment, we see that it was very 
limited in its application.  

Understanding the environment includes developing a higher-level understanding of the things within the 
environment with which the robot can interact (level 2 situation awareness; Endsley, 1995). In a system with 
effective HRI, the operator should able to quickly understand the environment around the robot using tools such 
as camera feeds and lidar data. However, to effectively control the robot, this information must be put into terms 
that the robot can understand.  

We found in the Trials that much of the effort applied in the HRI task was in developing this mutual 
understanding between the operator and the robot. From both studies, we saw that teams using interaction 
techniques with displays of simulation over live data generally performed better, as this method enables 
effective mutual understanding of the environment and control from the operator. However, the flexibility of 

http://www.drc-hubo.com/
http://www.drc-hubo.com/
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this technique in developing higher-level understanding is limited because it was based off of exact dimensions 
and constraints provided to the teams prior to the competitions, limiting its use to a static and known 
environment.  

It required some effort from the operator to gain situation awareness of the environment using acquired 
sensor data to place the 3D models correctly, but not as much as it would have in a variable environment. 
Operators already had well understood mental models of the task environments, as they had been training on 
them throughout their systems’ development, and therefore they were not required to gather much level 2 
situation awareness during task execution.  

To make the tasks more comparable to a realistic scenario, variation and unknowns need to be introduced. 
For example, instead of specifying the size and location for every piece of debris, a range of characteristics 
could have been provided; instead of locating the valves and doors in a very specific location, tolerances for 
those locations or even changes in height and/or ordering could have been provided; instead of specifying 
exactly what valves or doors had to be opened, a list of possibilities could have been provided.  

This would have forced teams to develop tools beyond what they used in the Trials to address flexibility.  By 
adding variability to the task setup, operators would have to initially gain situation awareness of task-specific 
dimensions and locations when a task is encountered and adapt to it on-the-fly, as one would have to in a real-
world scenario. In the next section, we describe the small amount of variation that was implemented at the DRC 
(the Surprise task), and how teams designed their HRI to perform flexibly. 

Surprise Manipulation Tasks 

During each day of the Finals competition, a different Surprise task was used: the Lever the first day of 
competition, and the Plug on the second. Given the differing tasks each day, teams had to be competent at 
performing both in order to maximize their chance of obtaining a high score on either day of the competition. 

To perform the Lever task, the robot had to make contact with the handle and effectively swing its hand/arm 
down to push the lever down. Some teams had to perform this action multiple times in order to move the lever 
down far enough to complete the task, but no fine manipulation or grasping was required. The task did not 
require fingers and was generally performed with a single static end effector.  

As such, its subtask function was classified as FOM. Typically, teams performing this task maneuvered the 
robot avatar’s end effector with the robot then planning trajectories (manipulation level of effort 2) after placing 
a model/template of the lever into the point cloud. The simplistic nature of the Lever task did not require much 
in the way of a feedback loop between the operator and the robot, aside from understanding whether or not the 
lever had been pushed down far enough for the task to be considered completed. 

To perform the Plug task, the plug end and/or the cable it attaches to must be grasped, pulled back and out of 
the left receptacle, repositioned (taking into account the flexible nature of the plug), and inserted into the right 
receptacle. Removing the plug requires fingers/grippers to grasp it, unlike the Lever task. The subtask function 
for the Plug task was classified as SOM.  

Operators typically placed models/templates of each receptacle on the wall and the plug/cable, then 
maneuvered the end effector of the robot avatar towards those models/templates such that the robot could plan 
trajectories (manipulation level of effort 2). The model/template for the plug end was typically static, meaning it 
did not move in the simulated display when the robot moved the physical plug in the real world. At least one 
team did update the placement of the model/template for the plug end once it was in the robot's gripper: AIST 
(Cisneros et al. 2016; see Figure 12).  

In doing so, the operators used the situation awareness provided by a camera in the robot’s other hand/arm 
for another viewing angle of the plug end’s position within the robot’s gripper to aid with task planning. With 
proper camera placement, point cloud generation, and fusion of the two, then interpreted by a trained operator, 
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they were able to successfully perform the Plug task. This is another example of a balance between the operator 
and the robot: the operator remains in the loop and focused, providing contextual understanding of the situation 
(placing the model/template) while the robot plans what to do with the conveyed information (adjust its grip and 
plan trajectories to maneuver the plug to the right receptacle).  

On average, completing the Lever task took 5:36 minutes and the Plug task took 11:25 minutes, more than 
twice the Lever task. Of all attempts at the Lever, 14.3% percent involved critical incidents other than falls or 
resets, compared to 29.6% on the Plug (Norton et al., 2017).  

The Plug task had more opportunities for failure than the Lever, given that it had the possibility of being 
dropped. Compare this to the Door task; if the robot loses grip on the door handle, regrasping is possible using 
the same trajectory of movements that were used to grasp it the first time due to the handle being attached to the 
door. The plug cable was attached to a wall behind the receptacles, but if dropped, the end of the plug was now 
much lower to the ground near the robot's knees. This resulted in teams abandoning that task attempt; no robots 
were observed attempting to regrasp the plug once it had been dropped. 

Figure 12. Team AIST’s interface display while performing the Plug task. Left: A model of the plug and left receptacle can be seen 
in the point cloud with the simulated robot avatar grasping it. Right: The model of the plug end being adjusted in the robot avatar's 
hand. The model of the left receptacle has been removed and a model of the right receptacle has been added.  
Images from Cisneros et al. (2016). 

Regardless of these differences in complexity, teams largely used the same HRI techniques for both Surprise 
tasks. This approach is understandable given that teams were not made aware of which Surprise task was to be 
in play until the day before each run. It reflects the unknown nature of a real disaster scenario, wherein the tasks 
that must be performed to remediate the situation may not be known ahead of time, only learned in situ once the 
robot is downrange.  

If operating in an environment that the operator is familiar with (e.g., known valve sizes, doorway 
dimensions, stair angles, etc.), a similar technique could be used. For operating in a more potentially unknown 
environment, similar techniques for balancing operator and robot responsibilities can be employed, but the type 
of information provided by the operator may need to be more malleable. Rather than a model/template of a 
specific object type, more robust interaction markers for planning grasps, finger placements, and approach 
angles could be provided by the operator for the robot to use for planning.  
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Discussion 

From our analysis of the DRC Finals, we distilled a set of HRI characteristics that successful teams 
possessed, which we used as a basis to generate a set of design guidelines for HRI with remote, semi-
autonomous humanoid robots. The guidelines are as follows: 

x Balance the capabilities of the operator and the system to effectively perform the task. 
x Keep the operator in the loop. Design HRI that requires steady interaction from the operator that 

supports and benefits from the autonomy of the robot. 
x Maintain operator awareness of robot state and use consistent control methods that function regardless 

of bandwidth. 
x Duplicate sensor fusion displays using different perspectives. Increased sensor fusion with common 

reference frames from an adjustable perspective is beneficial for remote teleoperation, and even more 
so by displaying two varying perspectives of the same data streams to increase the operator’s situation 
awareness. 

x Allow time for operator training and specialization. At this stage, humanoid robots are too complex 
such that general-purpose interfaces could be designed to be usable without training. (Norton et al., 
2017). 

The focus of the DRC was not on HRI development, but all teams did have to use an interface to control their 
robot and understand the environment around it. Given the competition design, the solutions they produced are 
developer-focused, not necessarily designed with consideration for transfer to novice users. With that said, there 
are still lessons to be learned and knowledge to be gained with respect to what was most effective. Through the 
analyses we have performed and the perspectives reviewed in this article, we can derive how the robotic 
advancements made at the DRC can inform human-robot teaming for real world response robotics. 

Lessons Learned from the DRC to the Real World 

Consider the target end user: a subject matter expert (SME). The target end user is a SME that is 
competently knowledgeable on the task being performed (e.g., navigating through a disaster area) likely with 
non-expert robot knowledge, nor sufficient amounts of robot training (Murphy, 2014). SMEs hold knowledge 
that cannot necessarily be easily programmed into a robot, not to mention the difficulty of equipping a robot 
with the perception needed to hold such knowledge.  

The concept of using a humanoid robot was to provide a form that can operate in a world designed for 
humans. To that end, the operator should be able to use the robot to perform tasks in the same way that he/she 
would if he/she were physically there in place of the robot, at least with respect to physical motions like rotating 
valves and crossing debris. Given his/her expertise, the operator should also be focused on performing the task, 
not controlling the robot. SMEs can also provide the contextual understanding of a scene that a robot does not 
possess, keeping the operator engaged and in the loop, so long as effective data displays and control methods are 
used.  

Using object models and templates. The use of models/templates as part of a robot control method is new 
for response robot HRI. A robot needs to obtain 3D depth information of its environment in order to use them 
properly, and 3D sensors are also not commonly implemented on response robots. The use of models/templates 
during the DRC was particularly effective, and was the closest interaction method we observed where the 
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operator was interacting “directly” with the task, rather than controlling the robot. This follows one of the 
principles of efficient HRI as proposed by Goodrich and Olsen (2003): an efficient interface should enable the 
operator to “directly manipulate the world.”  

This method was demonstrated by some robots autonomously planning actions based on how the operator 
manipulated the virtual object to a desired end state (e.g., rotating a virtual model of the valve wheel which the 
robot uses to plan its actions to achieve that end state). The success of this technique was largely due to the fact 
that the design of the DRC tasks were known a priori. For use in a more unknown environment, these interaction 
methods need to be more generalized. Reducing the models/templates to a series of primitive movements and 
spatial relationships may enable this generalization.  

Many of the models/templates used by teams were likely built on these elemental capabilities anyway, and 
some were even expressed in more general terms, but it is not clear how robust they are at being used outside of 
the DRC at this stage of development.  

Representing the environment with 3D spatial data. Many of the data displays at the DRC used 3D spatial 
information and renderings, providing a very obvious connection to the real world that was being represented 
(i.e., if scaled and localized correctly, the dimensions of the robot avatar, the environment, the virtual 
models/templates of objects, and their proximity to one another is approximate to what it actually is in the real 
world). When only camera images and a robot avatar are provided (unfused, as typical with present day 
response robots), the operator is burdened with piecing together an understanding of the scene and building a 
mental representation to work from.  

Some techniques that only use cameras to create more panoramic views for foveated vision have been 
implemented, like at the Trials competition (Yanco et al., 2015). However, when using only camera data, the 
operator must maneuver the robot’s cameras and/or the limbs they are attached to in order to decipher the scene. 
Any robot movement introduces possibilities for error, or in the case of unstable humanoid robots, a risk of 
falling. In the case of using 3D representation data, the operator can instead manipulate the perspective of the 
interface display to build their understanding of the scene, requiring no additional maneuvering of the robot and 
thus posing less risk. This builds on recommendations from Keyes et al. (2006) for providing an exocentric view 
of the robot to increase an operator’s situation awareness, by doing so while also making that viewing angle 
manipulable. 

Presenting robot status information through a simulated display. When the robot status is conveyed 
through a 3D display, it is done in simulation and is dependent on the robot’s understanding of its own position 
as informed by joint encoder values. When using a live video feed from a camera with an exocentric view of 
part of the robot, the operator watches the actual robot moving in the real world. In current response robot 
interfaces, there is very little simulation; everything being displayed is tied directly to the actual current state of 
the robot. While the 3D robot avatars at the DRC were able to remain updated throughout task completion, this 
was only possible due to the constant low-bandwidth line that was available regardless of communications 
degradations.  

In the real world, where communications blackouts could occur, this simulated 3D avatar could still function 
in a way that camera images could not: continuing to simulate the position in which the robot was supposed to 
be. Continuing to provide this type of information to the operator, even though it might be inaccurate, may be a 
worthy endeavor if it keeps him/her engaged in the interaction. A combination of both types of data may be 
necessary so the operator can draw distinctions between the position the robot thinks it is in (the avatar display, 
possibly showing a “ghost”) and where it actually is (the camera images). The displays can be fused together 
with a common reference frame to reduce cognitive workload, as was demonstrated at the DRC.  

Continued operation in degraded communications. Continuing to operate in a degraded communications 
environment is a largely new concept for robot operations by emergency responders. Intermittent 
communications can be expected in a disaster scenario, but typically operators are acting incrementally 
whenever bandwidth is available, pausing when it is not.  
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Many of the effective HRI techniques discussed in this article can continue to be used when low bandwidth is 
available, which can increase operational tempos and keep the operator engaged. The introduction of these types 
of control loops will be new to today’s end users, so we will need to be sensitive to its introduction. One 
challenge will be separating data that is “known” and that which is “estimated,” and providing that awareness 
back to the operator. These all rely on some level of robot autonomy, which will also be a new concept. Current 
response robots barely have behaviors to autonomously assist an operator during teleoperation, like avoiding 
obstacles while being driven.  

If we work towards implementing low-level autonomy into today’s platforms, we can ease the cognitive 
burden on the operator and enhance the HRI of the human-robot team in the present. The autonomy 
demonstrated at the DRC on very advanced robots can be considered the state-of-the-art, representing the future 
of robotics, but it is a long way from becoming hardened. We can’t expect to be effective in those high levels of 
autonomy if we don’t have effective solutions at the lower levels first. 

Designing HRI for varying levels of autonomy. Proper interface and interaction design is the means 
through which optimal function allocation can be accomplished. The various levels of autonomy observed 
across the systems at the DRC present many examples of how such a concept can be applied. This is highlighted 
even more through the nature of the different tasks, which many teams approached with their own strategy for 
optimal autonomy.  

Regardless, some teams used an approach largely focused on autonomy, as witnessed via highly functioning 
robotic systems with limited human consideration. However, some teams reported taking a more human-centric 
approach to the overall system design. The latter demonstrates viewing the challenges presented in the DRC as 
an overall interaction scenario, as opposed to a single-domain problem (e.g., entirely a software problem, an 
autonomy problem, etc.) (Parasuraman et. al., 2000). Including requirements dictated by the interaction system 
as a whole (namely, human considerations) promotes an interchangeable balance in the way humans and 
machines collaborate during high-risk, chaotic missions.  
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Impact of HRI in the Context of the DRC 

The ability to predict an outcome is a powerful method of testing a theory. In our analysis of the Finals, a 
(limited) model was developed by which a prediction of the results of the competition could be generated to 
show the true value of HRI in human-robot teaming. The model led to a 71% accurate prediction of the teams’ 
scores within +/- 1 point, compared to an accuracy of 45% based on the teams’ predictions of their own success 
and 31% if randomly guessed (Norton, et al., 2017). The model was based entirely on the findings from our 
evaluation of the Trials (Yanco et al., 2015), which enabled us to connect key performance metrics to specific 
interaction techniques.  

However, there are other strategic impacts to human-robot team performance outside of the isolated HRI 
factors. Some of these have been presented previously throughout this article (e.g., robot stability). Our 
prediction included a second model of performance based upon these other factors, capturing aspects of the 
teams’ capabilities such as robot stability, bandwidth adaptation, training, etc. As part of our evaluation, we 
conducted an independent assessment of all of the major performance-impacting factors to identify any clear 
patterns or themes, both HRI-related and non-HRI related.  

These consisted of key issues with the robot, operator, interaction, and team strategy. For example, some 
teams did not effectively compensate for low-bandwidth communications and therefore could not complete 
tasks during periods of degraded communications, resulting in much slower times compared to teams that did. 
While these teams performed poorly overall, it is possible that the underlying autonomy, robot capability, and 
interface techniques would have been very effective otherwise. 

These critical performance factors tended to fall into one of four team capability groups: 
x Operator specific: Not a function of the robot’s capability, autonomy, etc., but possibly something that 

could be mitigated through interface techniques to better inform the operator.  
x Robot capability: Hardware, balance, etc. that cannot fundamentally be overcome to complete a task, or 

that were a contributing factor to critical lapses in performance. 
x HRI specific: Limitations or gaps in the interaction that either prevented the operator from effectively 

controlling the robot or receiving feedback, or was a detriment to performance. 
x Software, autonomy, and/or communications: Any limitations that would prevent the operator from 

using an otherwise effective interface and robot. 

Some specific instances of these issues that were observed are captured in Table 4. The issues presented are 
by no means an all-inclusive list or even mutually exclusive, but rather are meant to capture a large part of the 
primary factors impacting performance. 
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Capability 
Group(s)  Critical Performance Factor, Description, and DRC-Specific Examples 

Operator 
specific 

Logistical shortfalls. Aspects of managing the tasks (such as following procedures correctly) that directly 
resulted in a fault or other issue impacting performance. 
Example: Missing a step in changing the robot’s state, causing a critical error. 

Robot 
capability 

Robot capability shortfalls. Strictly based on the hardware capability of the robot. 
Examples: Inherent instability causing falls. Insufficient strength to rotate valve. 

Robot 
capability 

System robustness shortfalls. Not a capability, but rather hardware and software robustness that impacts 
ability to complete the tasks. 
Examples: Antenna breaks off because of a fall. Servo software failure. Sensor data stops coming through 
unexpectedly. 

Robot 
capability 
HRI  
specific 

Fundamental gaps in robot situation awareness. The sensor suite itself or the manner in which the feedback 
is presented (or lack thereof) is ineffective at providing information to the operator such that he/she can 
effectively control the robot. 
Example: Lack of motor feedback preventing understanding of motion issues. 

HRI  
specific 

Poor execution of autonomy/interaction tools. Autonomous processes and other tools that were ineffectively 
implemented, resulting in the operator making an error during task execution, rather than the error occurring in 
the autonomy or interface itself. 
Example: Missing a step in changing the robot’s state, causing a critical error. 

HRI  
specific 

Fundamental gaps in environmental situation awareness. The sensor suite itself and/or the manner in which 
the feedback is presented (or lack thereof) is ineffective at providing situation awareness of the environment 
around the robot, causing critical incidents or forcing the operator to focus on developing SA, slowing down 
operations. 
Examples: Running into barriers with the vehicle. Attempting to turn the valve without actually having gripped 
it first. 

Software, 
autonomy,  
and/or 
comms 

Perception-based issues. Not autonomy, but inaccurate localization and identification. Includes ineffective 
implementation of what would normally be effective perception (meaning this is not related to the ability of the 
perception algorithms themselves or the sensors). 
Example: Repeated failed attempts to autonomously execute door task because of error in autonomous tasking 

Software, 
autonomy,  
and/or 
comms 

Lack of supporting cognitive autonomy. This is in the form of scripts for pre-set behaviors, closed-loop 
control through simulated objects, etc. 
Example: Extended periods of time when the operator is manually operating the robot to grasp/manipulate 
something. 

Software, 
autonomy,  
and/or 
comms 

Poor compensation for low-bandwidth. Impairing the ability of the operator to control the robot, either 
because he/she is unable to receive effective feedback because it is limited too much or because he/she is 
unable to send commands. 
Example: Extended periods of time when operation of the robot is significantly slowed because the operator is 
waiting for high-bandwidth transmission. 

Table 4. Some of the critical performance factors observed during the Finals competition. 
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Considering all of the impacts to performance, and the characteristics of operations in real world scenarios, the 
following lists key capabilities that we believe will be required of robotic systems to enable effective team 
performance: 

x Third order manipulation (TOM): This is a characteristic of operating in human-centric environments 
and is required to enable robots to interact with human-based systems as an effective extension of the 
user. 

x Wide range of interaction tools: Enables a system to be more capable of functioning in realistic disaster 
scenarios that have unknown and unpredictable environments. 

x Variable robot capabilities and associated interaction tools: The ability to change morphologies to 
match the scenario, ideally in a dynamic way, changing on-the-fly as needed. 

x Variable levels of autonomy: Enables a system to interact with the environment without reliable 
communication channels while maintaining the connection to the operator’s own expertise and 
contextual awareness. 

x Connection between the environment and control techniques: As exemplified by the simulated 
object/live object interaction technique, this enables a ‘mutual understanding’ between the robotic 
system and operator. 

Conclusion 

This article presents a series of perspectives on the factors influencing human-robot team performance at the 
DARPA Robotics Challenge Trials and Finals competitions, as informed by our evaluation of the events (Yanco 
et al., 2015; Norton et al., 2017). While not an exhaustive list of all the recommendations for effective HRI 
techniques for response robots, humanoid or otherwise, those provided are examples of how the results of the 
competition can continue into the research community and beyond. Effective human-robot teams are still needed 
using the highly teleoperated robots of today, let alone more capable and advanced robotic systems in the future.  

While the focus of our studies was on effective HRI techniques for remote humanoid robot control, many 
factors had an impact on performance, including the operator’s role and expertise, the varying robot 
morphologies, and the context of the event. Some of these critical performance factors, like robot balance 
instability and poor autonomy for object identification, can continue to be developed and eventually solved with 
better algorithms and more accurate sensors. However, all of these factors can only be harnessed through 
effective HRI, and cannot be considered after the fact. HRI design is an important component to making an 
effective human-robot team, if not the most essential. 
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�JHK0I[�TI>W6LQ>R[^FJ;J^JL^I0H6^TQ64^?I^2JII62R>JI^X>R=^�+�^6W6IRQ^4J6Q^ 
IJR^QT;;6QR^JN^>HKF[^6I4JNQ6H6IS�^QKJIQJNQ=>K�^ KOJHJR>JI�^ 0QQJ3>0R>JI^JP^ 
0:BF>0R>JI^X>R=^ R=6^ .�,�^ $JW6LIH6IR^JL^ �+)��^

]^��20^�JQRJI^!I;>I66L>I;^�JLKJL0R?JI�^�FF^L>;=RQ^L6Q6LW64
^�JQRJI^ 
"I;>I66L>I;^0I4^%H0;>I6^R=6^%HK02R^0L6^RL046H0LDQ^J7^�JQRJI^"I;>I66L>I<^ 
�JLKJL0S?JI�^�FF^JR=6L^1L0I4^JL^KLJ4T2R^I0H6Q^0L6^RL046H0LEQ^JL^L6;>QR6L64^ 
SL046H0LDQ^J7^R=6?L^L6QK62R>W6^JXI6MQ�^
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