
The Boston Engineering software team recently
completed a project that involved porting the soft-
ware for an existing system from FreeRTOS to
Zephyr. Below is a review of why they performed
this port, some thoughts about the two different Real
Time Operating Systems (RTOSes), and some inter-
esting insights that were gained along the way.

Brief History of FreeRTOS and Zephyr
Released in 2003, FreeRTOS has been used in em-
bedded devices for nearly twenty years. Amazon’s
support of FreeRTOS has been welcome news, in
addition, it establishes that there is strong continued
corporate support around the OS along side its wide
user base.

By comparison Zephyr is a newcomer, having its first
release in 2017. Though Zephyr lacks in overall ma-
turity, it’s fresh approach compensates with an abil-
ity to design without regard for decades of previous
development.

With this blank slate Zephyr devs were free to se-
lect technologies and approaches without being tied
to historical baggage, while also borrowing from the
best from systems and technologies, like FreeRTOS,
that came before them. Zephyr’s development pace
is amazing, with an average of some 200 commits
per week. FreeRTOS by comparison is a few dozen.

Decision to Port to Zephyr
We have had success working with both FreeRTOS
and Zephyr. In this situation the project had
requirements to add integration with CANopen

Porting from FreeRTOS to Zephyr:
Project, Process, and Unexpected Benefits Within an Embedded System

Challenge: Integrate embedded system with
CANopen devices

Solution: Port FreeRTOS to Zephyr

Result:
• Requirements met
• Savings gained through Zephyr Functionality
• Secured connectivity features for future use

Presented by:
Chris Morgan, Director Software Engineering
Boston Engineering

devices. While there is a CANopen integration with
FreeRTOS, the CANopen integration in Zephyr
was better developed and integrated, pointing to
a reduction in development time and effort. We
also looked at Zephyr’s support for a number of
connectivity features. Almost all electronic devices
developed today have some integrated connectivity,
such as Bluetooth Low Energy, WiFi, cellular etc.
While the specific project being ported had a near term
need for CANopen support, it has longer term future
connectivity needs. CANOpen plus IoT integrations
led us to selecting Zephyr as our target RTOS.

As a note, we did consider a number of other RTOSes
in addition to Zephyr, such as Mbed, embOS, and
Nuttx. Again, the integration of connectivity features
put Zephyr ahead of the others.

Comparison Against Project Requirements
This project required the following 9 characteristics:

•	 Integrated CANopen Stack,

•	 Wide range of connectivity features for future
use,

•	 Ability to run on low cost microprossesors,

•	 Real-Time operation,

•	 Minimal RAM/Flash Footprint,

•	 Maturity (proven usage in the marketplace),

•	 Active development and support,

•	 Robust tooling/IDE integration of Debugger, and

•	 Documentation

After reviewing several options, the decision came
down to two familiar options for Boston Engineering:
FreeRTOS and Zephyer. A Side by Side comparison
showed that while the systems are very similar,
Zephyr was the superior choice in this instance due
to having an integrated CANopen stack and a wide
range of connectivity features. Here is a summary of
those details, also shown in exhibit 1 below.

Both operating systems are able to run on low
cost microprocessors. Each has documentation
available online for easy download. FreeRTOS uses
STM32CubeIDE for it’s debiggunbg, while Zephyr
offer its own Zephyr SDK / VSCode + cortex-debug.

Either systems offer minimal RAM/Flash footprint,
with FreeRTOS needing 152k Flash and 169 RAM,
Zephyr 178K Flash and 121K Ram to run both the
OS and App. WE considered these numbers to be the
same given our loose constraints.

As a note, we have not looked to optimize consumption
of flash or ram for either FreeRTOS or Zephyr. The
microprocessor we are using has a lot of ram and
flash available and we’ve been focusing on features
vs. tuning. We expect that a considerable amount of
savings could be found in both cases.

We consider both FreeRTOS and Zephyr to be mature,
with 20 and 6 years of use, respectively. Each system
is actively developed and supported, with over 20 top
firms active in their respective development groups.
In fact, Many companies support both FreeRTOS
and Zephyr, recognizing that there are a number of
use cases where each may be better suited. With
this corporate support often comes code updates
and abstraction layers delivered to the code base for
developers to utilize.

Driving our final decision to employ Zepher is the fact
that, while a robust solution, FreeRTOS does not offer
an integrated CANopen Stack – rather their solutions
require porting by the developer – an added time and
expense. Zephyr’s options are integrated into the

configuration and build system.

Finally, Zephyr provides an extensive list of connectivity
features, far outpacing those offered by FreeRTOS,
and making it the clear choice for maintaining option
for future builds.

Actual Porting Activities
For this project, the system is a typical embedded
system. We make use of the following:

• Threads and thread synchronization

• Ringbuffer

• Console shell

• External flash

• Other devices: UARTs, RTC, i2c, spi

The porting went relatively smoothly, we were able
to learn more about Zephyr, and the results did
in fact allow us to save the time and effort we had
anticipated. Below is an analysis and notes related to
the actual process of porting each of these elements.

Threads and Thread Synchronization

The thread and thread synchronization changes were
the most straight forward part of the porting activity.
FreeRTOS and Zephyr have very similar functions
for creating threads, creating, and waiting on events /
semaphores etc.

Ringbuffer
During the Zephyr port it was (re-)discovered that the
application had implemented a ringbuffer, rather than
making use of the FreeRTOS streambuffer. Code
review of the custom ringbuffer revealed a number
of conditions that could result in memory overruns.

Exhibit 1: Comparing FreeRTOS & Zephyr Offering vs. Project Requirements

Project Requirements FreeRTOS Zephyr

Runs on low cost microprocessors Yes Yes

Documentation Yes Yes

Real-time Yes Yes

Robust Tooling / IDE integration of Yes Yes

Minimal ram/flash footprint Yes OS + app: 152k flash, 169k ram Yes OS + app: 178k flash, 121k ram

Actively developed and supported Yes: 23 development members Yes: 9 Platinum Developer members

Mature Yes – 20 years Yes – 6 years

Integrated CANopen stack No Yes

Wide range of connectivity features
for future use Partially

Some - via 3rd party libraries
Yes

Extensive - integrated into configuration
and build system

In addition, there were no unit tests for this ringbuffer
implementation.

With these gaps it was decided that we should replace
this ringbuffer implementation during the port. We
replaced this custom ringbuffer with a Zephyr pipes.
The Zephyr pipe provides thread synchronization and
is widely used and unit tested. Dropping this custom
code and leveraging a Zephyr primitive was a bonus.

Console Shell
The project makes use of a command line interface
(cli), provided via a UART, view and configure system
settings, and to aid in debugging. With the move
from FreeRTOS to Zephyr we transitioned from
FreeRTOS+CLI to the Zephyr Shell

External Flash
The FreeRTOS implementation had a few hundred
lines of application layer code to interface with an
external SPI flash, a W25X20 or similar. With global
supply chain issues, this code needed to be altered to
add support for an available Flash chip with a slightly
different memory layout and command set (AT25SF).

Zephyr has SPI flash drivers which supports both
the W25X20 and the AT25SF parts being used in the
project. A nice feature, indeed. By making use of the
Zephyr driver we take advantage of software that has
a lot more usage, testing, and development.

Other Devices
Zephyr has drivers for the processor family that was
used, in this case STM32, for uarts, i2c, spi, and rtc.

While there was a bit of a learning curve on how to
configure these devices in the devicetree, the port of
these devices from the STM32 HAL to Zephyr drivers
went smoothly.

Unexpected Benefits to Zephyr
During the port we uncovered into multiple aspects of
the Zephyr system things that excited us. While these
aren’t features that would have swayed a decision to
port to Zephyr, they are extras that we thought were
nice touches or great time savers.

• Developer support: We’ve had quick
responses from the Zephyr developers when
opening support requests. For example we
uncovered a bug with usage of pipes from ISR
context that no one else had run into. We reported
it (by opening a PR to clarify the documentation)
on the Zephyr GitHub issue tracker. After some
discussion the root cause was understood and in
two months the pipes functionality was rewritten
and the issue resolved. We were more than satisfied
with the quick identification phase and the time to
resolve, especially given the complexity of the pipes
and underlying systems.

• Integrated tooling: Zephyr ships with an
sdk and the west command line tool that simplifies
getting up and running

• Board support: Zephyr features broad
support for most development boards that we
commonly use

• Testing framework: Zephyr features a built-in
framework that allows for units tests to be created and
run against functions within your code. While many
similar frameworks exist, it can be cumbersome
to test code that includes (or is adjacent to) OS
primitives such as tasks and semaphores. The
built-in Zephyr framework - ZTests - allows these os
primitives to be compiled and tested alongside any
other line of code.

• Devicetree: Like Linux, Zephyr makes use of
the devicetree. This lets us leverage our knowledge
of Linux devicetrees and the devicetree itself lets
us consolidate device configuration (UART pins, spi

data rates) with custom board settings, removing
the need for build time #if / #ifdef conditionals.

With FreeRTOS we were using STM32CubeIDE.
Built on Eclipse, the STM32CubeIDE also includes
the CubeMX GUI tool that generates configuration
source code for the processor and its devices. With
Zephyr the function of configuring hardware shifts to
the device drivers, and the device drivers get their
configuration from the devicetree.

The shift from CubeMX to devicetree went relatively
smoothly. The devicetree does require that we
know more about the hardware configuration and
CubeMX provides some helpful checks for invalid
configurations. Even still, it wasn’t tough to transition
to devicetree files. Devicetree files are plain text,
which lets us version them in git and review changes.
And, even though we aren’t using STM32CubeIDE
on the project we still make use of the CubeMX tool
to aid in clock tree configuration!

• Linux-feel: Many of us have been using
Linux and POSIX OSes for what seems like
forever. Along with support for Linux features like
Kconfig, devicetree and SocketCAN, Zephyr also
provides a Posix compatibility layer. Sharing these
approaches, tools and API with Linux systems lets
us leverage our existing knowledge.

• Kconfig: FreeRTOS is configured via
FreeRTOSConfig.h. This is a perfectly reasonable
and simple way to configure OS options. Zephyr
has textual config files that you can edit. However,
it uses Kconfig to provide a menu driven approach
for configuring, reading option help, and searching

for OS configuration settings.

Having a menu driven configuration system is more
critical for Zephyr than for FreeRTOS, given the
Zephyr’s range of integrated subsystems and drivers
that can be enabled/disabled or configured.

Ultimately, we really like Zephyr Kconfig support!

Trends We See
Connectivity features (IoT) have dominated product
design for a number of years. There is a high value
brought to usability and maintenance through
connectivity. We agree with projections that nearly all
devices will become connected in some manner or
another.

As the trend towards more powerful and capable
processors continues we also expect that many new
and updated products will make use of more featureful
operating systems such as Linux.

Even still, many products are sensitive to cost and will
feature the lowest cost SoCs that meet their feature
requirements. These Systems-on-Chips (SoCs) will
continue running RTOSes even as RTOSes continue
to develop features in the direction of the major OSes
like Linux.

While we continue to look forward to expanding
our use of Zephyr we hope that FreeRTOS and
its developers will embrace its evolution towards
improved integration and connectivity features.

About the Author
Chris Morgan
Software Engineering Manager
Boston Engineering

Chris has over 20 years of experience in software and
hardware design. He enjoys all things engineering
and is an author and contributor of a number of open-
source projects.

About Boston Engineering Embedded Systems
Boston Engineering is a leader in the development of
custom embedded hardware and software systems.
Our integrated, cross functional team of electrical,
software, and mechanical engineers will advise, direct,
and manage any computing development project.
Whether the challenge is to modernize components,
increase reliability, improve performance, or
synchronize I/O options, Boston Engineering thrives
on solving the toughest challenges.

Embedded Systems is one of Boston Engineering’s
Centers of Excellence. Contact us to learn more
about how our Centers of Excellence define and
support the commitment we make to our clients and
the organizations we serve.

About Boston Engineering
Making a meaningful impact drove us to start the business in 1995 and it has driven every proj-
ect since. From designing advanced products and technologies to accelerating time to market, Bos-
ton Engineering thrives on solving tough client challenges. We provide product design and engineer-
ing consulting from concept development through commercialization. Clients benefit from our deep
product development capabilities, focused industry expertise, and ISO-certified quality management system.
Founded in 1995, Boston Engineering is headquartered in Waltham, Mass.

© 2023 Boston Engineering Corporation. All rights reserved. Boston Engineering and Imagine the Impact are trademarks of Boston Engineering Corporation. All other
brand or product names are trademarks or registered trademarks of their respective owners. CM230622v1

Contact us:
boston-engineering.com
info@boston-engineering.com
781-466-8010

About Boston Engineering Software Development
Boston Engineering’s Software Development process
leverages the experience and knowledge gained
through the development of dozens of software,
electromechanical, and robotic systems. Our Subject
matter experts have advanced knowledge of:

•	 Designing embedded systems that combine
new features with unmatched performance and
reliability
•	 Delivering precision motion control for robotics,

factory automation, and other applications
•	 Conducting software testing, as well as

verification and validation (V&V)
•	 Reducing risk and accelerating your project

development with simulation and software
prototyping.

Our skilled software developers are experts across
software development tools, including:

•	 UI development (Web, mobile, embedded) 
•	 Controls software 
•	 Embedded software 
•	 Robotic systems (ROS2)
•	 Operating systems: 

•		 Linux application development 
•		 RTOS (Zephyr, FreeRTOS)

•	 Internet of Things (IoT) 
•	 Communications systems and protocols (WiFi,

Cellular, BLE, Iridium)

www.boston-engineering.com
www.boston-engineering.com

